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This paper presents the design of a low-dispersion fiber Bragg Grating (FBG) with an optimal grating length. The paper 
aims to develop a numerical solution for the low-dispersion fiber Bragg Grating (FBG) via a variation of differential evolution, 
which is called CoDE. A novel objective function formulation is used to the optimal grating length low-dispersion FBG design. 
CoDE combines several effective trail vector generation strategies with some suitable control parameter settings in a 
random way to generate trail vectors. The design of a low-dispersion FBG filter with 25-GHz bandwidth is considered. The 
experimental results of the CoDE algorithm have been shown better than the CMAES algorithm and PSO algorithm in a 
statistically meaningful way. 
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1. Introduction 
 

Fiber Bragg grating has an important role in diverse 

fields ranging from optical communications to optical 

sensing. The synthesis and fabrication of FBGs have 

recently attracted many researchers [1]. Many 

methodologies have been proposed to solve the FBG in the 

literature [2-10]. Most of the previous approaches for the 

design of low-dispersion FBGs are based on the layer 

peeling inverse scattering algorithm. However, in practice, 

the FBGs designed using the methods to achieve the best 

performance generally has complicated index modulation 

profiles and long grating lengths. Moreover, for short 

grating with small bandwidths (BWs), the unwanted tail 

can be significant and lead to large deviation between the 

realized and target spectra [11]. In practice, they are more 

practical and easier to fabricate with good quality than 

longer gratings. Therefore, it is desirable to use other 

efficient approaches to design shorter-grating FBG filter 

with small BW. 

Recently, different global optimizations have been 

successfully used to find the optimal index profiles to 

satisfy the prescribed filter specifications. The heuristic 

optimizations techniques such as genetic algorithm (GA), 

particle swarm optimization (PSO), evolutionary 

programming (EP), and Tabu search have been proposed 

to accurately solve FBG filter. In [12], S. Bashar propose a 

novel formulation of the objective function for the design 

of fiber Bragg grating based filters with respect to the 

given design specifications. Particle swarm optimization 

technique is employed here to find an optimum index 

modulation profile that meets the target design. In order to 

demonstrate the effectiveness of the PSO, an optimal 

design of a low-dispersion FBG-based filter with 0.2nm 

bandwidth is considered as the experiment. In [11], S. 

Bashar uses covariance matrix adapted evolution strategy 

to design a low-dispersion fiber Bragg grating with an 

optimal grating length. Experimental results show the 

CMAES algorithm is very appropriate for the practical 

design of length optimized FBG-filter. 
Particularly, Differential evolution (DE) [13] is a 

method that optimizes a problem by iteratively trying to 

improve a candidate solution with regard to a given 

measure of quality. DE is a simple yet powerful population 

based, direct search algorithm with the generation and test 

feature for global optimization problems. The basic idea of 

DE is to create new candidate solutions by combining the 

parent individual and several other individuals of the same 

population, and a candidate solution replaces the parent 

only if it has better fitness.  Previous work shows the 

differential evolution to be an effective algorithm for some 

kind of problems. Furthermore, the differential evolution 

is well suitable to solve this problem because of the 

algorithm is easier to implement than GA and applied 

design problem with both discrete and continuous design 

parameters. In order to solve these problems, several 

variations of DE have been proposed to enhance the 

performance of the standard DE recently. Ranhnamayan et 

al [14] proposed an opposition based differential evolution, 

as called ODE. The ODE algorithm consisted of a DE 

framework and two opposition based components: the 

former after the initial sampling and the latter after the 

survivor selection scheme. Qin and Suganthan [15] 

proposed a self adaptive DE algorithm (SaDE), in which 

both trail vector generation strategies and the associated 

control parameter values were gradually self-adaptive by 

learning from their previous experiences when generating 

promising solutions. Wang [16] proposed a novel method, 

called composite DE (CoDE), which used three trail vector 

generation strategies and three control parameter settings. 

In this letter, composite differential evolution (CoDE) 

is used to design of a low-dispersion FBG filter with an 
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optimal grating length. The optimal–length FBG filter 

design is proposed based on six design specifications: 3-

dB BW, sidelobe level (SLL), first null Bandwidth 

(FNBW), in-band ripple (Rrip), maximum reflective 

power (Rmax), and in-band group delay ripple (trip). The 

proposed optimum-length low-dispersion FBG design 

determines the optimal grating length that satisfies the 

specified performance indicators. To demonstrate the 

capability of the CoDE algorithm and the effective of the 

objective function, a comparison between optimized 

performance indicators generated by various algorithms is 

shown. 

 

 

2. Problem formulation 
 

A simple FBG model is divided into n piecewise 

uniform sections. The transfer matrix for the entire grating 

can be obtained by chain multiplying the individual 

transfer matrices of the grating sections. The total grating 

length ( gL ) is equal to n*l. A uniform section of length (l) 

is determined by the optimization algorithm to find the 

optimal grating length for the desired reflective spectrum 

and dispersion profile.  Hence, in this letter, the objective 

of the optimal length low-dispersion FBG filter design 

problem is to find an index modulation profile correspond 

to n equal-length uniform sections and the section length 

(l). Then, the total variable of this problem is n+1.  

In general, evolutionary algorithms use the concept of 

fitness to represent whether the solution is suitable to the 

design the objective.  In the FBG synthesis problem, the 

cost function can be represented by the sum of the 

weighted errors. In order to show better performance, 

suitable weighting factor values at each wavelength are to 

be chosen [12]. The desired reflective spectrum and the 

group delay characteristics are predefined using six 

specifications: first null bandwidth (FNBW), sidelobe 

level (SLL), allowed in-band ripple in the reflective 

spectrum (Rrip), maximum reflective power (Rmax), and 

in-band group delay ripple (Trip) [11]. Then, for the 

design of an optimal-length low-dispersion FBG filter, the 

following fitness function [11] can be described as follow:     
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Where the subscript d is the target values of the 

design specifications. The first five terms in the fitness 

function (1) does not require the weighting factors for the 

errors in the reflective spectrum for different wavelength 

and the last two terms correspond to minimizing the in-

band group delay ripple and the total grating length. a 

determines how the reflective spectrum is weighted with 

respect to the phase or group delay response and is set 0.2. 

The value of b is 0.01. For a fixed-length FBG Filter 

design, the last term gL is not included in the objective 

function. The typical target design specifications used in 

our simulations are: SLL of -40dB, BW of 0.2nm, FNBM 

of 0.25nm, Rrip of 0.5dB, Trip of 0.5ps and Rmax of 0.99.  

 

 

3. Composite differential evolution 
 

Differential Evolution (DE) is an Evolutionary 

Algorithm first introduced by Storn and Price [13]. Similar 

to other evolutionary algorithms particularly genetic 

algorithm, DE uses some evolutionary operators like 

selection recombination and mutation operators. Different 

from genetic algorithm, DE use distance and direction 

information from current population to guide the search 

process. The crucial idea behind DE is a scheme for 

producing trial vectors according to the manipulation of 

target vector and difference vector. If the trail vector yields 

a lower fitness than a predetermined population member, 

the newly trail vector will be accepted and be compared in 

the following generation. 

Wang et al [16] proposed a new composite DE, CoDE, 

which is combining several effective trail vector 

generation strategies with some suitable control parameter 

settings in a random way to generate trail vectors.  This 

algorithm has a simple structure and is easy to implement. 

This basic idea of the algorithm is to randomly combine 

several trail vector generation strategies with a number of 

control parameter settings at each generation to create the 

new trail vector.  The above idea is illustrated in Fig. 1. In 

the paper, the author chooses three trail vector generation 

strategies and three control parameter settings to constitute 

the strategy candidate pool and the parameter candidate 

pool, respectively. The three selected trail generation 

strategies are: 

(1) “rand/1/bin” 

(2) “ rand/2/bin” and 

(3) “current-to-rand/1” 

 

Note that the “current-to-rand/1” strategy, the binominal 

crossover operator is not applied. The three control 

parameter settings are: 

 

(1)  [F=1.0, Cr=0.3] 

(2)  [F=1.0, Cr=0.9] 

(3)  [F=0.8, Cr=0.2] 

 

The three strategies and three parameter settings are 

frequently used in many DE variant and the properties 

have been discussed in [16]. At each generation, each trail 

vector in strategy candidate pool is used to create a new 

trail vector with a control parameter setting randomly 

chosen from the parameter candidate pool. Then three trail 

vectors are generated for each target vector. The best ones 

enter the next generation if it better than its target vector.  

The pseudo code of CoDE is presented as follow:  
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Fig. 1.  Illustration of combining trial vector generation strategies with control parameter settings. 

 

 

3. Experimental results  
 

This section compares the performance of CoDE over 

two different design problems: the design of a fixed length 

low-dispersion FBG filter and the design of an optimal 

length low-dispersion FBG filter with 0.2-nm BW for both 

designs are considered. The center wavelength of the filter 

is set to be 1550c  nm. For the design of the fixed-

length low dispersion FBG filter, the total grating length 

and number uniform sections are fixed at 40mm and 20 as 

in [8]. For the optimal-length low dispersion FBG filter, 

each section length is varied between 1 and 2.5 mm. The 

index profile is constrained to take value between 
43  e to 43 e .  For testing the consistency of the CoDE 

algorithm, 30 independent runs were conducted with 

20000 function evaluations. The computation time 

required for 20, 30 and 40 sections were 101.24, 144.54 

and 180.96 seconds on an Intel(R) Core(TM) 2 Quad 2.83-

GHz machine. 

 

 

3.1 Fixed-length low-dispersion FBG filter design 

 

For the fixed-length low-dispersion FBG filter, the 

results of all the 30 runs satisfy the specifications of the 

reflective spectrum and the group-delay response. The 

results can be found in Table 1. As can be seen in Table 1, 

The CoDE can perform better solutions than other 

algorithms. The best performance of the in-band group-

delay ripple is 0.0468 mean performance of the group-

delay ripple is 0.2458 worst performance of the group-

delay ripple is 0.962. The value obtained from the 

simulation for the various design specifications namely the 

FNBW, BW, Rrip, SLL, and Trip, are 0.25nm, 0.2nm, 

0.2dB, -40dBm and 0.0468os, respectively. The in-band 

reflective power was found to be at 99%. The in-band 

group delay varies between 223.1239 and 223.1706. The 

in-band dispersion length varies between +18 to -18 ps/nm. 

For the same grating length and index modulation strength, 

in [6], the filter has more than -10-dB SLL in the reflective 

spectrum and has the worst in band dispersion value of 

300ps/nm. In [8], it was found that the maximum in-band 

dispersion of 6000ps/nm. 
 

 

Table 1. Optimal Grating length for differential  

number of sections. 

 

Performance Optimum grating length(mm) 

 20 

Sections 

30 

Sections 

40 

Sections 

Best 32.86 30.01 30.8394 

Median 33.56 30.82 32.68 

Worst 34.23 33.45 35.26 

Std deviation 0.536 0.681 0.964 

 

3.2 Optimal-length low-dispersion FBG filter  

      design 

 

In this work, the grating length is also contained as 

one of the design parameters without compromising on the 

low-dispersion target specifications used in the previous 

section. The optimal grating length needs to satisfy the 

reflective and group delay specification is determined. The 

best, median, worst and standard deviation of the optimal 

grating length for different algorithms obtained in 30 runs 

are listed in Table 1. The results are all satisfied the 

specification corresponding to the reflective spectrum and 

the group delay response. From the Table 1, we can find 

that the CoDE emerged the best candidate algorithm for 

the best, mean, and worst value. 
 

the first trial vector generation strategy

the mth trial vector generation strategy

the second trial vector generation strategy

●
●
●

the mth control parameter setting

the second control parameter setting

the first control parameter setting

●
●
●
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procedure Algorithm description of CoDE algorithm 

begin 

Control parameter: 

NP:  the number of individuals at each generation. 

Max_FES: maximum number of function evaluation 

evaluations. 

The strategy candidate pool: “rand/1/bin”, 

“rand/2/bin”, “current-to-rand/1” 

The parameter candidate pool: [F=1.0, Cr=0.3], 

[F=1.0, Cr=0.9], and [F=0.8, Cr=0.2] 

Step 1) Initialization 

Step 1.1) Set the current generation number G=0; 

Step 1.2) Generate an initialize population 

0,0,1 ,, NPxx   by uniformly and randomly sampling from 

the feasible solution space. 

Step 1.3) Evaluate the objective function values of 

these points 

Step 1.4) FES=NP 

Step 2) For NPi ,,1 ,do 

  Step 2.1) use the three strategies, each with a control 

parameter setting randomly selected from the parameter 

pool, to generate three trail vectors Giu ,1_ , Giu ,2_ , and 

Giu ,3_  for the target vector Gix , . 

   Step 2.2) Evaluate the objective function values of 

three trail vectors Giu ,1_ , Giu ,2_ , and Giu ,3_ ; 

Step 2.3) Choose the best trail vector (denoted as *

,Giu ) 

from the three trail vectors Giu ,1_ , Giu ,2_ , and Giu ,3_  

Step 2.4) Selection and replacement: 

, , ,

, 1

,

, ( ) ( )

,

i G i G i G

i G

i G

u f u f x
x

x otherwise



 


 

Step 2.5) Set FES=FES+3 

Step 3) If FES<= Max_FES, stop and output the vector 

with the small objective function value in the population, 

otherwise, set G=G+1 and go to Step 2. 

end 

 
 

 

The results show that the grating length need to 

achieve the given reflective and group delay specification 

is 32.86 for 20 sections, and 30.83 for 40 sections.  

Compared with the fixed length, the same specification is 

approximately 37%. Fig. 2 and Fig. 3 show the index 

modulation profile, reflective spectrum of the optimal-

length low-dispersion FBG filter for 20 sections and 30 

sections. In Table 2, we compared our results with several 

other optimization methods for 0.2nm BW. Other methods 

[3],[5],[11] and [12] that shown different BWs of 0.4 and 

0.5nm are not used in comparison. 
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Fig. 2. Designed optimal-length low dispersion FBG  

filter of 20 sections.  
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Fig. 3. Designed optimal-length low dispersion  

FBG filter of 40sections.  
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Table 2. Comparison of various optimum FBG parameters. 

 

Parameter CODE 

Fix 

length 

Len.20 sections Len.3 sections Len.4 sections PSO[12] Ref[8] Ref[9] Ref 

CMAES[11] CoDE CMAES[11] CoDE CMAES[11] CoDE 

Length 40 32.96 32.86 30.04 30.01 29.20 30.8394 40  31 40 35.6 

FNBW 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 - - 0.4 

SLL  -40 -40.02 -40 -40 -40 -40.127 -40.001 -40 -10 - -28 

Rrip 0.2 0.365 0.2864 0.3878 0.4824 0.485 0.4989 0.2549 - - 0.1 

Trip 0.0468 0.134 0.1126 0.29 0.2235 0.424 0.2989 0.4495 - - 1 

IBD 18 29.5 46.6 43.56 49.31 60.34 47.1 56.4 300 6000 30 

GD 223 207.2 139 152.2 176 166.5 192 250 - - 125 

 

 

4. Conclusions 
 

In this work, the design of optimal-length low-

dispersion FBG filters using the CoDE algorithm has been 

presented. A novel objective function has been used to 

incorporate the grating length as a novel parameter in the 

optimization process. The design of a narrow-BW FBG 

filter with 0.2 nm BW has been presented. The 

experimental results clearly indicate superior performance 

of the proposed algorithm in comparison to some recent 

optimization algorithms. The result clearly shows that the 

CoDE method is well suitable for the design of optimal-

length low-dispersion FBG filter. We hope that this paper 

sparks a new venue of research in the problem of solving 

optimal-length low-dispersion FBG filter. 
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